
DATA SCIENCE
PYTHON INTRO 1
APRIL 14, 2014

THE ONLY PART: PYTHON
I. INTRO TO PYTHON
II. PYTHON STRENGTHS & WEAKNESSES
III. PYTHON DATA STRUCTURES
IV. PYTHON CONTROL FLOW

AGENDA

2

I. INTRO TO PYTHON
PYTHON FOR DATA SCIENCE: PART 2

INTRO TO PYTHON 4

Q: What is Python?

INTRO TO PYTHON 5

Q: What is Python?
A: An open source, high-level, dynamic scripting language.

INTRO TO PYTHON 6

Q: What is Python?
A: An open source, high-level, dynamic scripting language.

•  open source: free! (both binaries and source files)

INTRO TO PYTHON 7

Q: What is Python?
A: An open source, high-level, dynamic scripting language.

•  open source: free! (both binaries and source files)
•  high-level: interpreted (not compiled)

INTRO TO PYTHON 8

Q: What is Python?
A: An open source, high-level, dynamic scripting language.

•  open source: free! (both binaries and source files)
•  high-level: interpreted (not compiled)
•  dynamic: things that would typically happen at compile time happen at

runtime instead (eg, dynamic typing)

DYNAMIC TYPING 9

>>> x = 1!
>>> x!
1!
>>> x = ‘horse’!
‘horse’!
>>>	

INTRO TO PYTHON 10

Q: What is Python?
A: An open source, high-level, dynamic scripting language.

•  open source: free! (both binaries and source files)
•  high-level: interpreted (not compiled)
•  dynamic: things that would typically happen at compile time happen at

runtime instead (eg, dynamic typing)
•  scripting language: “middle-weight”

INTRO TO PYTHON 11

Why Python for Data Science?

Command Line Interface (CLI) – for even quicker prototyping
Straight- “sugar-free lite” syntax
Multiple programming paradigms
Large corpus of available libraries
Wide-use means extensive community support – stackoverflow, et al.

INTRO TO PYTHON 12

Python is an open source project which is
maintained by a large and very active
community.

It was originally created by Guido Van
Rossum in the 1990s, who currently holds
the title of Benevolent Dictator For Life
(BDFL).

INTRO TO PYTHON 13

The presence of a BDFL means that Python has a unified design philosophy.

This design philosophy emphasizes readability and ease of use, and is
codified in PEP8 (the Python style guide) and PEP20 (the Zen of Python).

NOTE: PEPs* are the public design specs that the language follows.
*Python Enhancement Proposals

II. PYTHON STRENGTHS &
WEAKNESSES

PYTHON FOR DATA SCIENCE: PART 2

STRENGTHS & WEAKNESSES 15

Python’s popularity comes from the strength of its design.

The syntax looks like pseudocode, and it is explicitly meant to be clear,
compact, and easy to read.

This is usually summarized by saying Python is an expressive language.

STRENGTHS & WEAKNESSES 16

Python is also an extremely versatile language, and it attracts fans
from many different walks of life:

web development Django https://www.djangoproject.com/
data analysis Pandas http://pandas.pydata.org/
systems admin Fabfile http://docs.fabfile.org/en/1.8/
Config mgmt SaltStack http://www.saltstack.com
(etc) ...more! https://github.com/search?q=python

INTRO TO PYTHON 17

Python supports multiple programming paradigms, such as:

- imperative programming
- object oriented programming
- functional programming (really function-esqe)

IMPERATIVE PROGRAMMING IN PYTHON 18

print ”Printing numbers to the screen”!
for i in range(5) :!
 try :!
 print i!
 except Exception as details :!
 print 'error: {0} -- {1}',format(details,i)!
 continue	

OBJECT ORIENTED PROGRAMMING (OOP) IN PYTHON 19

NOTE: Everything in Python is an object

Class ValueObject:!
 def __init__(self, initial_value):!
 self.my_value = initial_value!
!
 def decrement_value(self, decrement_value):!
 self.my_value -= decrement_value!
 return self.my_value!
!
Class MinimumValueObject(ValueObject):!
 def __init__(self, initial_value, minimum_value):!
 ValueObject.__init__(self, initial_value)!
 self.minimum_value = minimum_value!
!
 def decrement_value(self, decrement_value):!
 if self.my_value - decrement_value < self.minimum_value:!
 print 'Sorry, minimum value must be maintained.'!
 else:!
 ValueObject.decrement_value(self, decrement_value)!

FUNCTIONAL PROGRAMMING IN PYTHON 20

>>> x = range(5)!
>>> x!
[0, 1, 2, 3, 4]!
>>> [k**2 for k in x]!
[0, 1, 4, 9, 16]!
>>>	

NOTE: This is called a list comprehension

THE STANDARD LIBRARY 21

Another great strength is the Python Standard Library.

This is a collection of packages that ships with the standard Python
distribution, and “…covers everything from asynchronous processing to zip
files”.

The advantages of the PSL are usually described by saying that Python
comes with batteries included.

See: http://docs.python.org/2/library/ & http://docs.python.org/2/tutorial/stdlib.html

STRENGTHS & WEAKNESSES 22

Ultimately, Python’s most important strength is that it’s easy to learn
and easy to use.

Because there should be only one way to perform a given task, things
frequently work the way you expect them to.

 - paraphrased from PEP20 (“The Zen of Python”)

Takeaway: This is a huge luxury!

http://www.python.org/dev/peps/pep-0020/

STRENGTHS & WEAKNESSES 23

Q: Python sounds amazing. What is it bad at?

For one thing, Python is slower than a lower-level language (but keep in mind that this
is a conscious tradeoff).

Many people would say that Python’s Achilles heel is concurrency. This is a result of the
Global Interpreter Lock (again, a conscious design decision).

There are some other subtleties regarding dynamic typing that people occasionally
dislike, but again this is intentional (and a matter of opinion).

III. PYTHON DATA
STRUCTURES

PYTHON FOR DATA SCIENCE: PART 2

BASIC DATA STRUCTURES 25

The most basic data structure is the None type. This is the equivalent of
NULL in other languages.

There are four basic numeric types:
1.  int (< 263) / long (≥ 263)*

* on 64-bit OS X/Linux, sys.maxint = 2**63-1

2.  float (a “decimal”)
3.  bool (True/False) or (1/0)
4.  complex (“imaginary”)

>>> type(None)!
<type 'NoneType'>!
>>> type(1)!
<type ‘int’>!
>>> type(2.5)!
<type ‘float’>!
>>> type(True)!
<type ‘bool’>!
>>> type(2+3j)!
<type ‘complex’>!

http://docs.python.org/2/library/stdtypes.html#numeric-types-int-float-long-complex

BASIC DATA STRUCTURES 26

The next basic data type is the array, implemented in Python as a list.
A list is a (zero-based numbered), ordered collection of elements, and these
elements can be of arbitrary type.
Lists are mutable, meaning they can be changed in-place.

>>> a = [1,'b',True]!
>>> a[2]!
True!
>>> a[1]='aa'!
>>> a!
[1,'aa',True]!

http://docs.python.org/2/library/stdtypes.html#numeric-types-int-float-long-complex

BASIC DATA STRUCTURES 27

Tuples: immutable arrays of arbitrary elements.

Tuples are frequently used behind the scenes in a special type of variable
assignment called tuple packing/unpacking.

http://docs.python.org/2/library/stdtypes.html#numeric-types-int-float-long-complex

>>> x = (1,'a',2.5)!
>>> x[0]!
1!
>>> x[0]='b'!
Traceback (most recent call last):!
 File "<stdin>", line 1, in <module>!
TypeError: 'tuple' object does not support item assignment!
>>> a,b = (1,2)!
>>> a!
1!

BASIC DATA STRUCTURES 28

The string type in Python represents an immutable ordered array of
characters (note there is no char type).

Strings support slicing and indexing operations like arrays, and have many
other string-specific functions as well.

String processing is one area where Python excels.

http://docs.python.org/2/library/stdtypes.html

BASIC DATA STRUCTURES 29

Associative arrays (or hash tables) are implemented in Python as the
dictionary type. This is a very efficient and useful structure that Python’s
internal functions use extensively.

Dictionaries are unordered collections of key-value pairs, and dictionary
keys must be immutable.

>>> this_class={'subject':'python for data science',  
... 'instructor':'drew','time':'120, 'is_cool': True}!
>>> this_class['subject']!
'python for data science’!
>>> this_class['is_cool']!
True!

http://docs.python.org/2/tutorial/datastructures.html#dictionaries

Sets are unordered mutable collections of distinct elements.

These are particularly useful for checking membership of an element and
for ensuring element uniqueness.

>>> y = set([1,1,2,3,5,8])!
>>> y!
set([8, 1, 2, 3, 5])!

BASIC DATA STRUCTURES 30

http://docs.python.org/2/library/sets.html

BASIC DATA STRUCTURES 31

Our final example of a “data type” is the Python file object. This example
represents an open connection to a file on your laptop.

These are particularly easy to use in Python, especially using the with
statement context manager, which automatically closes the file handle
when it goes out of scope.

http://docs.python.org/2/library/stdtypes.html#file-objects

>>> with open('output_file.txt','w') as f:!
... f.write('test')!

IV. PYTHON CONTROL FLOW
PYTHON FOR DATA SCIENCE: PART 2

>>> x, y = False, False!
>>> if x :!
... print 'apple'!
... elif y :!
... print 'orange'!
... else :!
... print 'sandwich'!
... !
sandwich!

CONTROL FLOW 33

Python has a number of control flow tools that will be familiar from other
languages. The first is the if-else statement, whose compound syntax
looks like this:

CONTROL FLOW 34

A while loop executes while a given condition evaluates to True.

>>> x = 0!
>>> while True :!
... print 'HELLO!'!
... x += 1!
... if x >= 3 :!
... break!
... !
HELLO!!
HELLO!!
HELLO!!

CONTROL FLOW 35

The familiar (& useful) for loop construct executes a block of code for a
range of values.

The object that a for loop iterates over is called (appropriately) an iterable.

>>> for k in range(4) :!
... print k**2!
... !
0!
1!
4!
9!

A useful but possibly unfamiliar construct is the try-except block:

This is useful for catching and dealing with errors, also called exception
handling.

>>> try:!
... print undefined_variable!
... except :!
... print 'An Exception has been caught'!
... !
An Exception has been caught!

CONTROL FLOW 36

FUNCTIONS 37

Python allows you to define custom functions:

NOTE: Functions can optionally return a value with a return statement (as
this example does).

>>> def x_minus_3(x) :!
... return x - 3!
... !
>>> x_minus_3(12)!
9!

FUNCTIONS 38

Functions can take a number of arguments as inputs, and these arguments
can be provided in two ways:
1) as positional arguments:

>>> def f(x,y) :!
... return x - y!
... !
>>> f(4,2)!
2!
>>> f(2,4)!
-2!

FUNCTIONS 39

Functions can take a number of arguments as inputs, and these arguments
can be provided in two ways:
2) as keyword arguments (this example with defaults):

>>> def g(arg1=10, arg2=20) :!
... return arg1 / float(arg2)!
... !
>>> g(arg2=100)!
0.1!
>>> g(1,20)!
0.05!
>>> g()!
0.5!

CLASSES 40

Python supports classes with member attributes and functions:
>>> from math import pi!
>>>!
>>> class Circle() :!
... def __init__(self, r=1) :!
... self.radius = r!
... def area(self) :!
... return pi * (self.radius ** 2)!
... !
>>> c=Circle(4)!
>>> c.radius!
4!
>>> c.area()!
50.26548245743669!
>>> 3.141592653589793 * 4 * 4!
50.26548245743669!

IMPORT 41

As introduced on the last slide, the import statement avails library objects/
functions:

The three methods differ with respect to the interaction with the local
namespace.

>>> import math!
>>> math.pi!
3.141592653589793!
>>> from math import sin!
>>> sin(math.pi/2)!
1.0!
>>> from math import *!
>>> print e, log10(1000), cos(pi)!
2.71828182846 3.0 -1.0!

NAMESPACES 42

Python has three types of namespaces: local, global, and built-in.
For our purposes, namespaces are important because they control how
imported code can be accessed:

>>> import os!
>>> os.path.expanduser('~')!
'/Users/dstevens’!
>>> !
>>> path.expanduser('~')!
Traceback (most recent call last):!
 File "<stdin>", line 1, in <module>!
NameError: name 'path' is not defined!
>>> from os import path!
>>> path.expanduser('~')!
'/Users/dstevens'!

SYNTAX & INDENTATION 43

Python’s syntax is (again) designed with clarity in mind, and good syntax is
actually enforced by the interpreter.

This comes from the fact that instead of curly braces or ‘begin/end’
keywords, code blocks are defined by indentation.

This is unique to Python!

MODULES 44

A file with Python code in it is referred to as a module.

Modules can be turned into executable scripts in two (or three) steps:

1) include the if __name__ == ‘__main__’ block
2)  specify the interpreter (typically using a Unix shebang)
3)  *nix: make sure the file is executable (chmod a+x <module.py>)

The screenshot on the next slide demonstrates both of these.

MODULES 45

#!/usr/local/bin/python!
from mrjob.job import MRJob!
!
class MRHL(MRJob) :!
!
 def mapper(self, _, line) :!
 lat,lon,src,nuid = line.rstrip().split(',')!
 if src == 'physical' :!
 yield nuid, (lon, lat)!
 else :!
 pass!
!
 def reducer(self, nuid, lonlats) :!
 unique_lonlats = list(set([tuple(k) for k in lonlats]))!
 yield nuid, len(unique_lonlats)!
!
if __name__ == '__main__' :!
 MRHL.run()!

MODULES - EXAMPLE 46

#!/usr/local/bin/python!
import numpy as np!
!
def run() :!
!
 def run() :!
 to_process = np.array([[1,2,3,4],[5,6,7,8]])!
 for x in to_process.flatten() :!
 print x*5!
!
if __name__ == '__main__' :!
 run()!

COMMENTS 47

Comments in Python are denoted by the ‘#’ character.

DOCSTRINGS 48

There are also special comments called docstrings that immediately follow
class and function definitions.

Docstrings are denoted by triple quotes.

Useful for auto source documentation tools:

 PyDoc, Dphinx, Doxygen
 https://wiki.python.org/moin/DocumentationTools

def function(parameters, options) :!
 “””Do something really, really important “””!
 !

LAB

PYTHON FOR DATA SCIENCE

LAB: SETUP 50

.

Lab on Github Repo
•  https://github.com/fidsteve/DAT6-Material
$ git clone https://github.com/fidsteve/DAT6-Material!
... !
$ cd DAT6-Material!
$ ipython notebook!
...!
!

LAB: IPYTHON NOTEBOOK 51

.

LAB: DATA 52

Federal Election Committee – Contributions by Individuals
•  Data Dictionary : http://1.usa.gov/1qwe7ti
•  Raw Data : http://1.usa.gov/1qweqEd

http://www.fec.gov/finance/disclosure/metadata/DataDictionaryContributionsbyIndividuals.shtml
http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk
http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html#arrays-dtypes-constructing
http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html

THIS IS THE LAST SLIDE 53

…nothing to see here.

THIS IS THE REALLY LAST SLIDE 54

…go back.

