EEEEEEEEEEEEEEE

DATA SCIENCE
PYTHON INTRO 1

APRIL 14,2014

AGENDA

THE ONLY PART: PYTHON

. INTRO TO PYTHON

. PYTHON STRENGTHS & WEAKNESSES
[1l. PYTHON DATA STRUCTURES

IV. PYTHON CONTROL FLOW

PYTHON FOR DATA SCIENCE: PART 2

|. INTRO TO PYTHON

INTRO TO PYTHON

(: What is Python?

INTRO TO PYTHON

(: What is Python?

A: An open source, high-level, dynamic scripting language.

INTRO TO PYTHON

(: What is Python?

A: An open source, high-level, dynamic scripting language.

* open source: free! (hoth binaries and source files)

INTRO TO PYTHON

(: What is Python?

A: An open source, high-level, dynamic scripting language.

* open source: free! (hoth binaries and source files)
* high-level: interpreted (not compiled)

INTRO TO PYTHON

(: What is Python?

A: An open source, high-level, dynamic scripting language.

* open source: free! (hoth binaries and source files)

* high-level: interpreted (not compiled)

* dynamic: things that would typically happen at compile time happen at
runtime instead (eg, dynamic typing)

DYNAMIC TYPING

INTRO TO PYTHON 10

(: What is Python?

A: An open source, high-level, dynamic scripting language.

open source: free! (both binaries and source files)

high-level: interpreted (not compiled)

dynamic: things that would typically happen at compile time happen at
runtime instead (eg, dynamic typing)

scripting language: “middle-weight”

INTRO TO PYTHON

11

Why Python for Data Science?

Command Line Interface (CLI) — for even quicker prototyping

Straight- “sugar-free lite” syntax

Multiple programming paradigms

Large corpus of available libraries

Wide-use means extensive community support — stackoverflow, et al.

INTRO TO PYTHON

Python is an open source project which is
maintained by a large and very active
community.

It was originally created by Guido Van
Rossum in the 1990s, who currently holds
the title of Benevolent Dictator For Life
(BDFL).

INTRO TO PYTHON 13

The presence of a BDFL means that Python has a unified design philosophy.

This design philosophy emphasizes readability and ease of use, and is
codified in PEP8 (the Python style guide) and PEP20 (the Zen of Python).

NOTE: PEPs are the public design specs that the language follows.

"Python Enhancement Proposals

PYTHON FOR DATA SCIENCE: PART 2

|l. PYTHON STRENGTHS &
WEAKNESSES

STRENGTHS & WEAKNESSES

15

Python's popularity comes from the strength of its design.

The syntax looks like pseudocode, and it is explicitly meant to be clear,
compact, and easy to read.

This is usually summarized by saying Python is an expressive language.

STRENGTHS & WEAKNESSES 16

Python is also an extremely versatile language, and it attracts fans
from many different walks of life:

web development Django https://www.djangoproject.com/
data analysis Pandas http://pandas.pydata.org/
systems admin Fabfile http://docs.fabfile.org/en/1.8/
Config mgmt SaltStack http://www.saltstack.com

(etc) ...more! https://github.com/search?g=python

INTRO TO PYTHON

17

Python supports multiple programming paradigms, such as:

- Imperative programming
- object oriented programming
- functional programming (really function-esqe)

IMPERATIVE PROGRAMMING IN PYTHON 18

print
for i in range(5)
try

print i

except as details
print , format (details, i)
continue

OBJECT ORIENTED PROGRAMMING (0OP) IN PYTHON

Class ValueObject:
def init (, initial value):
.my value = initial value

def decrement value(, decrement value):
.my value -= decrement value
return .my value

Class MinimumValueObject(ValueObject):
def init (, initial value, minimum value):
ValueObject. init (, initial value)
.minimum value = minimum value

def decrement value(, decrement value):
if .my value - decrement value < .minimum value:
print
else:
ValueObject.decrement value(, decrement value)

FUNCTIONAL PROGRAMMING IN PYTHON

20

[k**2 for k in x]
1, 9, 16]

NOTE: This is called a list comprehension

THE STANDARD LIBRARY 21

Another great strength is the Python Standard Library.

This is a collection of packages that ships with the standard Python
distribution, and “...covers everything from asynchronous processing to zip
files”.

The advantages of the PSL are usually described by saying that Python
comes with batteries included.

ra/2/library/ & http://docs.python.org/2/tutorial/stdlib. htm/

STRENGTHS & WEAKNESSES 22

Ultimately, Python’s most important strength is that it's easy to learn
and easy to use.

Because there should be only one way to perform a given task, things

frequently work the way you expect them to.
- paraphrased from PEP20 (“The Zen of Python”)

Takeaway: This is a huge luxury!

http://www.python.org/dev/peps/pep-0020/

STRENGTHS & WEAKNESSES 23

(: Python sounds amazing. What is it bad at?

For one thing, Python is slower than a lower-level language (but keep in mind that this
is a conscious tradeoff).

Many people would say that Python’s Achilles heel is concurrency. This is a result of the
Global Interpreter Lock (again, a conscious design decision).

There are some other subtleties regarding dynamic typing that people occasionally
dislike, but again this is intentional (and a matter of opinion).

PYTHON FOR DATA SCIENCE: PART 2

lIl. PYTHON DATA
STRUCTURES

BASIC DATA STRUCTURES

25

The most basic data structure is the None type. This is the equivalent of

NULL in other languages.

There are four basic numeric types:

1. int (<2%)/long (= 2%)

* on 64-bit 0S X/Linux, sys.maxint = 2**63-1
2. float (a “decimal”)
3. hool (True/False) or (1/0)
4. complex (“imaginary”)

http://docs.python.org/2/library/stdtypes. html#numeric-types-int-float-long-complex

>>> type(None)
<type 'NoneType'>
>>> type(l)

<type ‘int’'>

>>> type(2.5)

<type ‘float’>
>>> type(True)
<type ‘bool’>
>>> type(2+3])
<type ‘complex’>

BASIC DATA STRUCTURES 26

The next basic data type is the array, implemented in Python as a list.

A list is a (zero-based numbered), ordered collection of elements, and these
elements can be of arbitrary type.

Lists are mutable, meaning they can be changed in-place.

>>> a = [1,'b',True]
>>> a[2]
True

>>> a[l]="'aa'
>>> g
[1, 'aa’',True]

http://docs.python.org/2/library/stdtypes. html#numeric-types-int-float-long-complex

BASIC DATA STRUCTURES

27

Tuples: immutable arrays of arbitrary elements.

>>> x = (1,'a',2.5)

>>> x[0]

1

>>> x[0]='b'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> a,b = (1,2)
>>> a
1

Tuples are frequently used behind the scenes in a special type of variable
assignment called tuple packing/unpacking.

http://docs.python.org/2/library/stdtypes. html#numeric-types-int-float-long-complex

BASIC DATA STRUCTURES

28

The string type in Python represents an immutable ordered array of
characters (note there is no char type).

Strings support slicing and indexing operations like arrays, and have many
other string-specific functions as well.

String processing is one area where Python excels.

http://docs.python.org/2/library/stdtypes.html

BASIC DATA STRUCTURES 29

Associative arrays (or hash tables) are implemented in Python as the
dictionary type. This is a very efficient and useful structure that Python’s
Internal functions use extensively.

>>> this class={'subject': 'python for data science'’,
. 'instructor':'drew', 'time':'120, 'is cool': True}
>>> this class['subject']

'python for data science’
>>> this class['is_cool']
True

Dictionaries are unordered collections of key-value pairs, and dictionary
keys must be immutable.

http://docs.python.org/2/tutorial/datastructures. html#dictionaries

BASIC DATA STRUCTURES

30

Sets are unordered mutable collections of distinct elements.

>>> y = set([1,1,2,3,5,8])

>>> y
set([8, 1, 2, 3,

These are particularly useful for checking membership of an element and
for ensuring element unigueness.

http://docs.python.org/2/library/sets.html

BASIC DATA STRUCTURES 31

Our final example of a “data type” is the Python file object. This example
represents an open connection to a file on your laptop.

>>> with open('output file.txt',6'w') as f:

f.write('test')

These are particularly easy to use in Python, especially using the with
statement context manager, which automatically closes the file handle
when it goes out of scope.

http://docs.python.org/2/library/stdtypes. html#file-objects

PYTHON FOR DATA SCIENCE: PART 2

IV. PYTHON CONTROL FLOW

CONTROL FLOW

33

ooks like this:

Python has a number of control flow tools that will be familiar from other
anguages. The first is the if-else statement, whose compound syntax

X, y = False, False
if x

. print 'apple'’

. elif y :

print 'orange'

. else :

print 'sandwich'

sandwich

CONTROL FLOW

34

A while loop executes while a given condition evaluates to True.

>>> x =0

>>> while True :
print "'HELLO!'
x += 1
if x

HELLO!
HELLO!
HELLO!

CONTROL FLOW

33

The familiar (& useful) for loop construct executes a block of code for a
range of values.

>>> for k in range(4) :
print k**2

The object that a for loop iterates over is called (appropriately) an iterable.

CONTROL FLOW

36

A useful but possibly unfamiliar construct is the try-except block:

>>> try:
print undefined variable
. except :
print 'An Exception has been caught'

An Exception has been caught

This is useful for catching and dealing with errors, also called exception
handling.

FUNCTIONS

37

Python allows you to define custom functions:

>>> def x minus 3(x) :
return x - 3

>>> x minus 3(12)
9

NOTE: Functions can optionally return a value with a return statement (as
this example does).

FUNCTIONS 38

Functions can take a number of arguments as inputs, and these arguments
can be provided in two ways:
1) as positional arguments:

>>> def f(x,y) :
return x -y

>>> £(4,2)

FUNCTIONS 39

Functions can take a number of arguments as inputs, and these arguments
can be provided in two ways:

2) as keyword arguments (this example with defaults):

>>> def g(argl=10, arg2=20) :
. return argl / float(arg2)

>>> g(arg2=100)
0.1

>>> g(1,20)
0.05

>>> g()

0.5

CLASSES

40

Python supports classes with member attributes and functions:

from math import pi

class Circle()
def init (self, r=1)
self.radius = r
def area(self)
return pi * (self.radius ** 2)

>>> c=Circle(4)

>>> c.radius

4

>>> c.area()
50.26548245743669

>>> 3,141592653589793 * 4 * 4
50.26548245743669

IMPORT 41

As introduced on the last slide, the import statement avails library objects/
functions:

>>> import math
>>> math.pi
3.141592653589793

>>> from math import sin

>>> sin(math.pi/2)

1.0

>>> from math import *

>>> print e, logl0(1000), cos(pi)
2.71828182846 3.0 -1.0

The three methods differ with respect to the interaction with the local
namespace.

NAMESPACES

Python has three types of namespaces: local, global, and built-in.
For our purposes, namespaces are important because they control how

imported code can be accessed:

>>> import os
>>> os.path.expanduser('~")
'/Users/dstevens’

>>>
>>> path.expanduser('~")

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'path' is not defined

>>> from os import path

>>> path.expanduser('~")

'/Users/dstevens'’

SYNTAX & INDENTATION 43

Python's syntax is (again) designed with clarity in mind, and good syntax is
actually enforced by the interpreter.

This comes from the fact that instead of curly braces or ‘begin/end’
keywords, code blocks are defined by indentation.

This is unique to Python!

MODULES

A file with Python code in it is referred to as a module.

Modules can be turned into executable scripts in two (or three) steps:

1) includethe 1f _ _name__ == ‘_ main__ ' block

2) specify the interpreter (typically using a Unix shebang)
3) *nix: make sure the file is executable (chmod a+x <module.py>)

The screenshot on the next slide demonstrates both of these.

MODULES

mrjob. job

class MRHL (MRJob)

def mapper (;, o+ line)
lat,lon,src,nuid = line.rstrip().split(

if src == :
yield nuid, (lon, lat)
else
pass

reducer (, nuid, lonlats)

unique lonlats = (([(k) for k in lonlats]))
yield nuid, (unique lonlats)

if name
MRHL.run()

MODULES - EXAMPLE

L6

numpy np

def run()

def run()
to process = np.array([[1,2,3,4]1,[5,6,7,8]])
for x in to process.flatten()
print x*5

if name ==
run()

COMMENTS

47

Comments in Python are denoted by the ‘#' character.

break when msg timestamp passes t_end
try:
1f created >= t_end:
break

1f created DNE, keep going
except Exception details:
print details
pass

DOCSTRINGS 48

There are also special comments called docstrings that inmediately follow
class and function definitions.

def function(parameters, options) :

Docstrings are denoted by triple quotes.

Useful for auto source documentation tools:
PyDac, Dphinx, Doxygen

https://wiki.python.org/moin/DocumentationTools

PYTHON FOR DATA SCIENCE

LAB: SETUP

a0

Lab on Github Repo
* https://github.com/fidsteve/DAT6-Material

$ git clone

S cd DAT6-Material

$ ipython notebook

LAB: IPYTHON NOTEBOOK

91

IPIyl: Notebook

Notebooks Running Clusters

To import a notebook, drag the file onto the listing below o

a

& | DAT6-Lab-2014-04-14

New Notebook

l Upload I ancel

~
(%3

LAB: DATA

92

Federal Election Committee — Contributions by Individuals
» Data Dictionary : http://1.usa.qov/1gwe7ii
 Raw Data : http://1.usa.qov/TqweqEd

atp.//ia lO.‘ ensus.go dce apjesen e pPAYeS/PIrogy ewW. XNun ZRKIMK
http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html#arrays-dtypes-constructing
http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html

THIS IS THE LAST SLIDE

93

...nothing to see here.

THIS IS THE REALLY LAST SLIDE

o4

..o back.

