
Introduction to git

APRIL 16, 2014

Part 0: The Problem

When editing project files this
has a tendency to happen:

$ ls
ls -lt
total 0
-rw-r--r-- 1 dstevens staff 0 Apr 16 09:52 file.py
-rw-r--r-- 1 dstevens staff 0 Apr 15 10:00 file.py-1
-rw-r--r-- 1 dstevens staff 0 Apr 14 08:00 file.py-2
-rw-r--r-- 1 dstevens staff 0 Apr 10 08:00 file.py-2014-04-10
-rw-r--r-- 1 dstevens staff 0 Dec 10 08:00 file.py-OLD
-rw-r--r-- 1 dstevens staff 0 Oct 10 2012 file.py-OLD.older

The revision control
benefits

• stores revisions of a file on demand

• stores comments on each revision

• allows retrieval of any previous revision

• displays the differences between any pair of
revisions

• manages multiple lines of development

Part 1: Basic Theory

git is really intelligent, and
beautiful.

But it takes some time to fully grasp the way it works.

Just ask if you need help with your understanding.

The SVN model

Server
Repository

svn commit

Commits are only shared through the server.

svn update

You
Your

colleague

The Git model

“origin”
Repository

git push git pull

You
Your

colleague

May at first look like a traditional Revision Control System

The Git model

You can push/pull commits to any remote repository,
there is no difference between server and client.

“origin”
Repository

git push git pull

Your
Repository

Your
colleague’s
repository

git push REMOTE

git pull REMOTE

So how does that
work?

First of all, definitions:
• Working tree

A directory in your filesystem that is associated with a
repository, containing files & sub-directories.

• Repository
A collection of commits & branches, saved in the .git
directory.

• Commit
A snapshot of your working tree at a certain point in
time, identified by a revision number.

• HEAD
The name for the commit thats currently checked out in
the working tree.

Revision Numbering

• Every commit gets a globally unique
identifier, not a simple revision number
git log 00de993ae4a12f286da8bdf24b041c2e8dfc4e3b
vs
svn log -r3129

• For commands you can also cut off the end
of the identifier, as long as that is still
unique within your repository
git log 00de993ae4

git clone

is your starting point for working with
existing code

It creates a local repository for you, copying
& tracking the master branch from the

specified location.

git clone https://github.com/numpy/numpy.git

Remotes

• By default you’ll only have the “origin”
remote repository, which is the repository
you did git clone from.

• List existing remotes using git remote

• Show details with
git remote show NAME

• Add new remotes using
git remote add NAME URL

Commits = local

• git commit only affects your repository,
not the origin or any other remote
repository

• git push in order to share your commits

• Commits are cheap & fast

• Commit as often as possible!

The index

• When you edit/add/remove files, only your
working tree changes

• To commit changes, you first save them in
the index with git add (or git rm)

• git status shows the current index

• git commit commits only the changes
saved in the index, and clears the index
afterwards

But there’s also git commit -a to commit
all unsaved working tree changes without

adding them to the index.

But use this option carefully.

* You still have to use git rm for removing files

Also of import:

git push

push our changes to a
remote repository

Additionally:

git log
git diff

git annotate

And they do what you expect.

man git-annotate
 ...

is also your friend.

Branching
&

Merging

Branches are cheap.

Merging just works.*

* ...or “merging works very well”; merge conflicts
can still be very complex to remedy

Branch
=

Alternate commit path

Per default you always work on the
master branch.

master

git branch

shows you the branch you are currently on
(marked with *) & lists the available branches

A branch is local to your repository,
create as many or as little as you like.

Create a new one:

git branch BRANCH

Checkout an existing one:

git checkout BRANCH

master

experiment

You can also push all commits of your
current branch to a remote branch:

git push REMOTE BRANCH

git push origin master
git push

Or checkout someone else’s branch,
work on it, and then share your

changes:

git branch -r # list remotes
git checkout REMOTE_BRANCH

git branch BRANCH
...

git push

git merge BRANCH

Merges the specified branch into your
current branch.

You must have a common ancestor.

If the merge fails, use git status to see
the conflicts, edit the files, git add

them and then git commit.

Visualizing the tree

git commit -m “reason”

git commit -m “comment”

git add FILE

git branch experiment
git checkout experiment

1. git add FILE
2.

git checkout master
git add FILE2

3.

git merge experiment
4.

You can delete the merged branch
afterwards:

git branch -d BRANCH

git will complain if this would result in lost changes (use -D to override).

git push REMOTE :REMOTE_BRANCH

to delete a remote branch.

Careful!
This won’t check whether the branch is already merged.

Tips & Tricks

git gui

is your friend, especially when
you’re confused.

git checkout FILENAME

to revert a file changed in the working
tree back to HEAD

git checkout BRANCH

to revert a all files to the HEAD of that
BRANCH

Only if you didn’t commit yet.

git revert REVISION

to revert a complete revision.

Creates a new commit that removes the
changes.

.gitignore
instead of

svn propset svn:ignore

Single .git directory in the root directory,
instead of multiple .svn directories

Most relevant configuration is stored in the

.git/config

remotes, author name/email, etc.

git stash

git submodule

git cherry-pick

https://www.atlassian.com/git/tutorial

One great resource:

Further information

• Git - SVN Crash Course
http://git.or.cz/course/svn.html

• The Git Community Book
http://book.git-scm.com/index.html

• John Wiegley: Git from the bottom up
http://ftp.newartisans.com/pub/git.from.bottom.up.pdf

• Github: a social source-code sharing site
http://github.com/

Part 2: Lab

