@ GENERAL ASSEMBLY

Introduction to git

APRIL 16,2014




Part O: The Problem




When editing project files this
has a tendency to happen:

dstevens
dstevens

dstevens
dstevens
dstevens
dstevens

-PY

.py-1

.py-2
.py-2014-04-10
. py-OLD
.py-OLD.older




The revision control
benefits

® stores revisions of a file on demand
® stores comments on each revision
® allows retrieval of any previous revision

® displays the differences between any pair of
revisions

® manages multiple lines of development




Part |: Basic Theory




git is really intelligent, and
beautiful.

But it takes some time to fully grasp the way it works.

Just ask if you need help with your understanding.




The SVN model

svn commit svn update

Your
colleague

Commits are only shared through the server.




The Git model

Your
colleague

May at first look like a traditional Revision Control System




The Git model

“origin”
Repository

git push

git push REMOTE

Your
colleague’s
repository

Your
Repository

git pull REMOTE

You can push/pull commits to any remote repository,
there is no difference between server and client.




So how does that
work!?




First of all, definitions:

¢ Working tree
A directory in your filesystem that is associated with a
repository, containing files & sub-directories.

e Repository
A collection of commits & branches, saved in the .git
directory.

e Commit
A snapshot of your working tree at a certain point in
time, identified by a revision number.

e HEAD

The name for the commit thats currently checked out in
the working tree.




Revision Numbering

® Every commit gets a globally unique
identifier, not a simple revision number

git log 00de993aed4al12f286da8bdf24b041c2e8dfcde3b

VS
svn log -r3129

® For commands you can also cut off the end
of the identifier, as long as that is still
unique within your repository

git log 00de993ae4




glt clone

is your starting point for working with
existing code

It creates a local repository for you, copying
& tracking the master branch from the
specified location.

git clone https://github.com/numpy/numpy.git




Remotes

By default you’ll only have the “origin”
remote repository, which is the repository
you did git clone from.

List existing remotes using git remote

Show details with
glt remote show NAME

Add new remotes using
git remote add NAME URL




Commits = local

git commit only affects your repository,
not the origin or any other remote
repository

git push in order to share your commits
Commits are cheap & fast

Commit as often as possible!




The index

® When you edit/add/remove files, only your
working tree changes

® Jo commit changes, you first save them in
the index with git add (or git rm )

® git status shows the current index

® git commit commits only the changes
saved in the index, and clears the index
afterwards




But there’s also git commit -a to commit
all unsaved working tree changes without
adding them to the index.

But use this option carefully.

*You still have to use git rm for removing files




Also of import:
glt push

push our changes to a
remote repository




Additionally:

git log
git diff
glt annotate

And they do what you expect.

man git—-annotate

is also your friend.




Branching
&
Merging




Branches are cheap.




Merging just works.™

* ...or “merging works very well”’; merge conflicts
can still be very complex to remedy




Branch

Alternate commit path




Per default you always work on the
master branch.

®-0-0-0-0 -




glt branch

shows you the branch you are currently on
(marked with *) & lists the available branches




A branch is local to your repository,
create as many or as little as you like.




Create a new one:

git branch BRANCH

Checkout an existing one:

glt checkout BRANCH

- experiment

/

- - - master




You can also push all commits of your
current branch to a remote branch:

git push REMOTE BRANCH

glt push origin master
git push




Or checkout someone else’s branch,
work on it, and then share your
changes:

git branch -r # list remotes
git checkout REMOTE BRANCH
glt branch BRANCH

glt push




glit merge BRANCH

Merges the specified branch into your
current branch.

You must have a common ancestor.

If the merge fails, use git status to see
the conflicts, edit the files, git ada
them and then git commit.




Visualizing the tree

1. 2,

. , git add FILE
git branch experiment (::::J git commit -m “comment”
glt checkout experiment

"""‘ ?
N 0—»0*0*0

glt checkout master *
glit add FILEZ
glt commit -m “reason”- -

glt merge experiment




You can delete the merged branch
afterwards:

glt branch -d BRANCH

git will complain if this would result in lost changes (use —D to override).




glit push REMOTE :REMOTE BRANCH

to delete a remote branch.

Careful!
This won’t check whether the branch is already merged.




Tips & Tricks




glt gul

is your friend, especially when
you're confused.




glt checkout FILENAME

to revert a file changed in the working
tree back to HEAD

glt checkout BRANCH

to revert a all files to the HEAD of that
BRANCH

Only if you didn’t commit yet.




glt revert REVISION

to revert a complete revision.

Creates a2 new commit that removes the
changes.




.gltignore
instead of
svn propset svn:ilignore




Single .git directory in the root directory,
instead of multiple .svn directories




Most relevant configuration is stored in the

.git/config

remotes, author name/email, etc.




git stash




git submodule




git cherry-pick




One great resource:

https://www.atlassian.com/git/tutorial




Further information

Git - SVN Crash Course

http://git.or.cz/course/svn.html

The Git Community Book

http://book.git-scm.com/index.html

John Wiegley: Git from the bottom up

http://ftp.newartisans.com/pub/git.from.bottom.up.pdf

Github: a social source-code sharing site
http://github.com/




Part 2: Lab




