
DATA SCIENCE
PYTHON INTRO 2
APRIL 16, 2014

PART 1: PYTHON AND THE DATA SCIENCE WORKFLOW
I. THE DATA SCIENCE WORKFLOW

PART 2: USEFUL PYTHON LIBARIES
I. NUMPY
II. PANDAS
III. SCIPY
IV. SCIKITS
V. MATPLOTLIB

PART 3: WRAP-UP & NEXT STEPS
I. RESOURCES FOR FURTHER EXPLORATION

AGENDA

2

INTRODUCTION
PYTHON FOR DATA SCIENCE: PART 1

PYTHON FOR DATA SCIENCE / INTRODUCTION 4

What is data science?

The extraction of useful information and knowledge from large
volumes of data, in order to improve decision-making
… or to tell a compelling story.

Data Science for Business // O’Reilly Media, Inc © 2013 Foster Provost and Tom Fawcett.

(PYTHON IN) THE
DATA SCIENCE
WORKFLOW

PYTHON FOR DATA SCIENCE: PART 3

PYTHON AS A TOOL FOR DATA SCIENCE 6

Doing Data Science // O’Reilly Media, Inc. © 2014 Cathy O’Neil and Rachel Schutt.

ACQUISTION 7

Web data-access APIs:

-  urllib // (python standard library web crawling)
-  Beautiful Soup (html/xml tree parsing)
-  scrapy // (web crawling to extract structured data)
-  python-twitter
-  python-linkedin
-  python-instagram

DATA PREPARATION 8

The goal of “Pre-processing” is to convert data into a standard format.

A standard format allows for input to algorithms to be standardized.

Some algorithms require inputs to be particularly formatted.

Relevant Libraries:
-  NumPy
-  Pandas

ANALYSIS/MODEL 9

Try different algorithms to determine the optimal choice

Relevant Libraries:
-  SciPy
-  scikit-learn

Since seeing is believing…

Relevant Library: matplotlib

VISUALIZATION 10

http://bit.ly/1gCXPtP // http://http://blog.olgabotvinnik.com

USEFUL LIBRARIES
FOR DATA SCIENCE

PYTHON FOR DATA SCIENCE: PART 4

(ANALYSIS, MODELING,
& VISUALIZATION)

 1

 2

1 n-dimensional array object, broadcasting functions, linear algebra
2 numerical integration, interpolation, optimization, linear algebra++, FFT

DATA SCIENCE LIBRARY INTRODUCTION 12

NumPy “Fundamental package for scientific computing”
Matplotlib Plotting (& histograms, power spectra, bar charts, errorcharts, scatterplots, etc)

SciPy “Fundamental library for scientific computing”

Pandas Python Data Analysis
Scikits Application domain toolkits

DATA SCIENCE LIBRARY: NUMPY 13

NumPy

 “add[s] support for large, multi-dimensional arrays and matrices,

 along with a large library of high-level mathematical functions
 to operate on these arrays”
 - Wikipedia

http://en.wikipedia.org/wiki/NumPy

DATA SCIENCE LIBRARY: NUMPY 14

Vectors, arrays, and matrices

v[3]	

m[1,2]	

m=	

v=	

 d[1,0,2]	

d=	

v[0]	

page, row, col	

row, col	

row	

DATA SCIENCE LIBRARY: NUMPY 15

ndarray object creation, indexing and slicing (1-dimensional)

>>> import numpy as np!
>>> a = np.array([0, 1, 5, 7, 6, 5, 2, 3, 8, 9])!
>>> a[3]!
7!
>>> a[3:7]!
array([7, 6, 5, 2])!
>>> a[7:3:-1]!
array([3, 2, 5, 6])!
>>> b=np.array([1,5,7])!
>>> a[[b]]!
array([1, 5, 3])!
>>> a[a > 5]!
array([7, 6, 8, 9])!

DATA SCIENCE LIBRARY: NUMPY CREATING ARRAYS 16

More methods to quickly create ndarray objects (1-d) and (2-d)

>>> b = np.arange(1, 20, 3)!
>>> b!
array([1, 4, 7, 10, 13, 16, 19])!
>>> a = np.ones((3, 3))!
>>> a!
array([[1., 1., 1.],!
 [1., 1., 1.],!
 [1., 1., 1.]])!
>>> b = np.zeros((2, 2))!
>>> b!
array([[0., 0.],!
 [0., 0.]])!

MATRIX MULTIPLICATION (REMINDER)

17

RULE: Two matrices can be
multiplied only when the
number of columns in the
first equals the number of
rows in the second1

numpy.dat(a,b)

1http://en.wikipedia.org/wiki/Matrix_(mathematics)

a b

DATA SCIENCE LIBRARY: NUMPY 2-D MATRICES 18

2-d ndarray object (“a matrix”) can be defined; and operations applied
 >>> a=np.array([[1,2,3],[4,5,6]])!

>>> a!
array([[1, 2, 3],!
 [4, 5, 6]])!
>>> a.shape!
(2, 3)!
>>> a.T!
array([[1, 4],!
 [2, 5],!
 [3, 6]])!
>>> a.T.shape!
(3, 2)!
>>> b=np.array([6, 7])!
>>> np.dot(a.T,b)!
array([34, 47, 60])!

DATA SCIENCE LIBRARY: NUMPY 19

ndarray operations

>>> b = np.arange(12).reshape(3,4)!
>>> b!
array([[0, 1, 2, 3],!
 [4, 5, 6, 7],!
 [8, 9, 10, 11]])!
>>> b.sum(axis=0)!
array([12, 15, 18, 21])!
>>> b.sum(axis=1)!
array([6, 22, 38])!
>>> b.sum()!
66!
>>> b.min(axis=1)!
array([0, 4, 8])!
>>> b.max(axis=0)!
array([8, 9, 10, 11])!

DATA SCIENCE LIBRARY: NUMPY 20

Matric object and 2-d matrix indexing and slicing

>>> b=np.mat('1 2 3 4; 5 6 7 8; 9 10 11 12')!
>>> b!
matrix([[1, 2, 3, 4],!
 [5, 6, 7, 8],!
 [9, 10, 11, 12]])!
>>> b[:,:3]!
matrix([[1, 2, 3],!
 [5, 6, 7],!
 [9, 10, 11]])!
>>> b[:,3]!
matrix([[4],!
 [8],!
 [12]])!

DATA SCIENCE LIBRARY: NUMPY 21

Matrix object – allows matrix arithmetic using operators

>>> b=np.mat('1 2 3 4; 5 6 7 8; 9 10 11 12')!
>>> b!
matrix([[1, 2, 3, 4],!
 [5, 6, 7, 8],!
 [9, 10, 11, 12]])!
>>> a=np.mat('1;2;3;4')!
>>> b*a!
matrix([[30],!
 [70],!
 [110]])!

DATA SCIENCE LIBRARY: NUMPY 22

n-dimension ndarray object (“matrices”) can also be created

>>> aa=np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])!
>>> aa!
array([[[1, 2, 3],!
 [4, 5, 6]],!
 [[1, 2, 3],!
 [4, 5, 6]]])!
>>> bb=np.array([[[3],[4],[6]],[[6],[5],[7]]])!
>>> aa.shape, bb.shape!
((2, 2, 3), (2, 3, 1))!
>>> np.dot(aa,bb)!
array([[[[29],!
 [37]],!
 [[68],!
 [91]]],!
 [[[29],!
 [37]],!
 [[68],!
 [91]]]])!

DATA SCIENCE LIBRARY: NUMPY 23

ndarray element-wise operations – scalar and matrix

>>> aa = np.arange(5)!
>>> aa!
array([0, 1, 2, 3, 4])!
>>> aa * 5!
array([0, 5, 10, 15, 20])!
>>> bb = np.array([2, 4, 6, 8, 10])!
>>> np.multiply(aa, bb)!
array([0, 4, 12, 24, 40])!
>>> np.divide(aa, bb.astype(float))!
array([0. , 0.25 , 0.33333333, 0.375 , 0.4])!
!
!

DATA SCIENCE LIBRARY: NUMPY 24

Matrix math

>>> a=np.array([[1,2],[3,4]])!
>>> a!
array([[1, 2],!
 [3, 4]]!
>>> b=np.array([[1],[2]])!
>>> b!
array([[1],!
 [2]])!
>>> a.shape, b.shape!
((2, 2), (2, 1))!
>>> np.dot(a,b)!
array([[5],!
 [11]])!
>>> np.dot(b,a)!
Traceback (most recent call last):!
 File "<stdin>", line 1, in <module>!
ValueError: objects are not aligned!

DATA SCIENCE LIBRARY: MATPLOTLIB 25

Matplotlib

 “… tries to make easy things easy
 and hard things possible. You can generate plots,
 histograms, power spectra, bar charts,
 errorcharts, scatterplots, etc, ….”
 - matplotlib website

http://matplotlib.org/

DATA SCIENCE LIBRARY: MATPLOTLIB

26

API/toolkit highlights

•  matplotlib.pyplot - plotting framework
•  matplotlib.mlab - compatibility with MATLAB commands
•  matplotlib.backends - the output format of the plot (pdf, screen)
•  mpl_toolkits.mplot3d - basic 3D plotting (scatter, surf, line, mesh)

DATA SCIENCE LIBRARY: MATPLOTLIB 27
import numpy as np, matplotlib.pyplot as plt, matplotlib.mlab as mlab!
 !
mu = 100 # mean of distribution!
sigma = 15 # standard deviation of distribution!
x = mu + sigma * np.random.randn(10000)!
!
num_bins = 50!
the histogram of the data!
n, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='green', alpha=0.5) !
!
y = mlab.normpdf(bins, mu, sigma) # obtain a 'best fit' line!
plt.plot(bins, y, 'r--') # actually plot the line!
plt.xlabel('Bins') # give the plot some context with axis labels !
plt.ylabel('Probability')!
plt.title(r'Histogram of IQ: $\mu=100$, $\sigma=15$') # and a title !
!
Tweak spacing to prevent clipping of ylabel!
plt.subplots_adjust(left=0.15)!
plt.show()!

DATA SCIENCE LIBRARY: MATPLOTLIB 28
>>> bins!
Array([48.764523 50.87209103 52.97965905 55.08722708 57.19479511!
 59.30236313 61.40993116 63.51749918 65.62506721 67.73263523!
 69.84020326 71.94777129 74.05533931 76.16290734 78.27047536!
 80.37804339 82.48561141 84.59317944 86.70074747 88.80831549!
 90.91588352 93.02345154 95.13101957 97.23858759 99.34615562!
 101.45372364 103.56129167 105.6688597 107.77642772 109.88399575!
 111.99156377 114.0991318 116.20669982 118.31426785 120.42183588!
 122.5294039 124.63697193 126.74453995 128.85210798 130.959676!
 133.06724403 135.17481206 137.28238008 139.38994811 141.49751613!
 143.60508416 145.71265218 147.82022021 149.92778824 152.03535626!
 154.14292429])!
>>> y # “Probability”!
Array([7.78686799e-05 1.24595710e-04 1.95465329e-04 3.00651063e-04!
 4.53400627e-04 6.70390505e-04 9.71851609e-04 1.38133312e-03!
 1.92496687e-03 2.63011330e-03 3.52331944e-03 4.62760144e-03!
 5.95917639e-03 7.52389798e-03 9.31377883e-03 1.13040822e-02!
 1.34515107e-02 1.56939830e-02 1.79523646e-02 2.01342987e-02!
 2.21400052e-02 2.38696085e-02 2.52312773e-02 2.61492684e-02!
 2.65708969e-02 2.64715427e-02 2.58570308e-02 2.47630662e-02!
 2.32517985e-02 2.14059766e-02 1.93214585e-02 1.70990166e-02!
 1.48364065e-02 1.26215496e-02 1.05274454e-02 8.60913831e-03!
 6.90275939e-03 5.42640433e-03 4.18242277e-03 3.16060393e-03!
 2.34173952e-03 1.70111416e-03 1.21158727e-03 8.46062225e-04!
 5.79263647e-04 3.88845081e-04 2.55919459e-04 1.65141556e-04!
 1.04480635e-04 6.48099365e-05 3.94161094e-05])!

DATA SCIENCE LIBRARY: SCIPY 29

SciPy

 “is a collection of mathematical algorithms
 and convenience functions
 built on the Numpy extension ”
 - SciPy documentation

http://docs.scipy.org/doc/scipy-dev/scipy-ref.pdf

DATA SCIENCE LIBRARY: SCIPY 30

Scipy: Fast Fourier Transform

import scipy, scipy.fftpack, matplotlib.pyplot as plt, scipy.constants as c !
sig = scipy.linspace(0,120,4000)!
acc = lambda t: 10 * scipy.sin(2 * c.pi * 2.0 * t) + \!
 5 * scipy.sin(2 * c.pi * 8.0 * t) + 2 * scipy.random.random(len(t))!
!
signal = acc(sig)!
!
FFT = abs(scipy.fft(signal))!
freqs = scipy.fftpack.fftfreq(signal.size, sig[1]-sig[0])!
!
f, (ax1, ax2, ax3) = plt.subplots(3, sharex=False, sharey=False)!
!
ax1.plot(sig, signal)!
ax2.plot(sig[1000:1200], signal[1000:1200])!
ax3.plot(freqs,20*scipy.log10(FFT),'x')!
!
plt.show()!

DATA SCIENCE LIBRARY: SCIPY 31

Scipy: Fast Fourier Transform Visualized

ax2.plot(t[1000:1200], signal[1000:1200])!

ax1.plot(t, signal)!

ax3.plot(freqs,20*scipy.log10(FFT),'x’) !!

DATA SCIENCE LIBRARY: SCIPY 32

Additional sub-packages:
cluster Clustering algorithms
constants Physical and mathematical constants
integrate Integration and ordinary differential equation solvers
interpolate Interpolation and smoothing splines
linalg Linear algebra
ndimage N-dimensional image processing
optimize Optimization and root-finding routines
sparse Sparse matrices and associated routines

DATA SCIENCE LIBRARY: PANDAS 33

Pandas

 “… an open source… library providing
 high-performance… data structures
 and data analysis tools”
 - pandas website

http://pandas.pydata.org/

DATA SCIENCE LIBRARY: PANDAS 34

Series - one-dimensional labeled array

 Seri

>>> import pandas as pd, numpy as np!
>>> s = pd.Series(np.random.randn(3), index=['a', 'b', 'c’])!
>>> s!
a -0.245247!
b -1.162124!
c -0.698275!
dtype: float64!
>>> s['a']!
-0.24524714260468519!
>>> s[0]!
-0.24524714260468519!
>>> d = {'a' : 0, 'b' : 1, 'c' : 2}!
>>> pd.Series(d)!
a 0!
b 1!
c 2!
dtype: int64!

DATA SCIENCE LIBRARY: PANDAS 35

Series – vector operation support and index alignment

>>> s = pd.Series(np.arange(5), index=['a', 'b', 'c', 'd'])!
>>> s + s!
a 0!
b 2!
c 4!
d 6!
dtype: int64!
>>> t = pd.Series([30,40], index=['b', 'c'])!
>>> t!
b 30!
c 40!
dtype: int64!
>>> s + t!
a NaN!
b 31!
c 42!
d NaN!

DATA SCIENCE LIBRARY: PANDAS 36

DataFrame – 2-d labeled data structure

>>> d = {'one' : [10., 20., 30., 40.], 'two' : [4., 3., 2., 1.]}!
>>> pd.DataFrame(d, index=['a','b','c','d'])!
 one two!
a 10 4!
b 20 3!
c 30 2!
d 40 1!
>>> dd={'0':pd.Series([1,2],index=['a','b']),!
... '1':pd.Series([15,25,35],index=['a','b','c'])}!
>>> pd.DataFrame(dd)!
 0 1!
a 1 15!
b 2 25!
c NaN 35!

DATA SCIENCE LIBRARY: PANDAS 37

DataFrame – data alignment and arithmetic operations

>>> df = pd.DataFrame(np.floor(np.random.randn(3, 4)*10), columns=['A', 'B', 'C', 'D'])!
>>> df!
 A B C D!
0 4 -1 12 18!
1 8 12 -7 11!
2 2 13 6 21!
>>> df2 = pd.DataFrame(np.floor(np.random.randn(3,2)*10), columns=['B', 'C'])!
>>> df2!
 B C!
0 -2 -10!
1 11 9!
2  4 2!
>>> df + df2!
 A B C D!
0 NaN -3 2 NaN!
1 NaN 23 2 NaN!
2 NaN 17 8 NaN!

DATA SCIENCE LIBRARY: PANDAS 38

Panel – 3-d labeled data structure

>>> panel = pd.Panel(np.random.randn(5,3,2).round(decimals=1),!
... items=['one', 'two', 'three','four','five'],!
... major_axis=pd.date_range('1/1/2000', periods=3),!
... minor_axis=['a', 'b'])!
>>> panel.to_frame()!
 one two three four five!
major minor !
2000-01-01 a -1.4 -0.1 -0.1 -0.9 2.9!
 b -0.1 -0.1 1.5 0.1 0.5!
2000-01-02 a 0.9 0.3 -0.2 -1.1 -0.8!
 b -0.0 -0.6 0.0 -0.0 1.4!
2000-01-03 a 0.1 2.0 0.2 2.4 -1.2!
 b -0.9 -1.8 1.0 -1.4 -0.9!

DATA SCIENCE LIBRARY: PANDAS 39

Some additional notable features:

•  Data loading (flat files, Excel, MySQL)
•  Data selection using indexes
•  Group by (columns or indexes)
•  Joins
•  NumPy and custom functions vectorized via the .apply() method

DATA SCIENCE LIBRARY: SKITS

40

Scikits
 “(short for SciPy Toolkits), are add-on packages for SciPy,
 hosted and developed separately
 from the main SciPy distribution.”
 - SciKits website

 http://scikits.appspot.com/about

DATA SCIENCE LIBRARY: SCIKITS

41

Some useful SciKits:

scikit-learn Machine learning and data mining
scikit-monaco Monte Carlo integration
statsmodels Statistical computations and models
optimization Numerical optimization

http://scikits.appspot.com/scikits

DATA SCIENCE LIBRARY: SCIKIT-LEARN

42

Machine learning library: Models, Optimization, Preprocessing, …

http://scikit-learn.org/stable/auto_examples/plot_classifier_comparison.html

RESOURCES & NEXT STEPS
PYTHON FOR DATA SCIENCE: PART 5

RESOURCES FOR FURTHER EXPLORATION 44

Learn the command line interface (free HTML version)
http://cli.learncodethehardway.org

Take a Python tutorial (free HTML version)
http://learnpythonthehardway.org

Refresh your understanding of linear regression
https://www.khanacademy.org/math/probability/regression

RESOURCES FOR FURTHER EXPLORATION 45

Python Distribution (for Analytics) – Annaconda by Continuum Analytics
http://contimuum.io

On-line Python Integrated Development Environment (IDE)
http://wakari.io

LAB

PYTHON FOR DATA SCIENCE

THIS IS THE LAST SLIDE 47

…nothing to see here.

THIS IS THE REALLY LAST SLIDE 48

…go back.

