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AGENDA

= Introduction to (applied) Choice Modeling
Learning how to leverage data & use predictive models
Takeaway: understand behavioral patterns & decision making process
= Discrete Choice Models
LPM — Linear Probability Model
Non-Linear Probability Models:
Logit (Log-Normal dist.)
Probit (normal dist.)
Nested-Logit
Random Coefficient (RD)
BLP

Practical Example

Motivation in Real-World Interface



INTRODUCTION - MOTIVATION

How can we explain changes and differences between the choices
we make — everyday!?

Choices?:
Whether | decide to work (be employed), or not!?
Whether | decide to purchase 2% milk vs. non-fat milk?
Whether a firm decides to adopt a new technology?
Whether | decide to get married?

Whether Apple should invest in a new feature (or improve a current one)?

All of these are important everyday choices we want to understand



INTRODUCTION - MOTIVATION

What can we do !

= We can try to understand how decisions are made (what drives our

decision to choose, behave, or act in a certain way..)

= We can try to understand how different features/attributes affect our

decisions or our behavior

We will be able to make recommendations, create strategy, and polices

Example: Buy iPhone vs.Android?

How different attributes (e.g.: screen, design,.) or features (e.g.: Siri, Touch-
Screen) affect our decision to buy

an iPhone or other (Android)

Seems to be important for manufactures, marketers, and developers



MOTIVATION

In order to answer these questions we need to understand agents’ behavior (e.g.: consumers,
firms, policies)

—> we need to define and estimate Choice Models —Discrete (binary) or Continues

= We will focus on Discrete Choice Models

= Discrete Choice Models - A binary Choice:

All of these questions deal with binary choices — 0 or | (notation: ouZcome
=y=(0,1))

Examples:
Be employed, or not? > emp(0,1)
Decided to purchase 2% milk or non-fat milk? = milk2%(0, )
Firm decided to adopt a new technology? = platform(0, 1)

Get married? = married(0, 1)



FROM THEORY TO EMPIRICS

A Fresh Reminder:

We are living in a new era! — Big Data

There are things we know (x\lk) and there are some that we don’t know (Z{)

OLS regression )7‘/=,6’l0 ‘;ﬁ\ll x\ll +,6)\l2 le +/€\l3 X\l3 ,,+ﬁ\lkx\lk+
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OLS is a linear regression — the effect of the estimated parameters (ﬁlk) on the outcome (J/) is linear (i.e., constant)

How do we interpret the results? — one unit change in xl/{’ (increase/decrease) will change)/by ﬁl/{' (‘linearity’)



MODELS OF DISCRETE CHOICE

Three common models:
LPM — Linear Probability Model
Non-Linear Models (Advanced)
Probit (assuming Normal dist.)
Logit (assuming Log-Normal dist.)
= Each model has its own features (assumptions)

= Each model has its own pros and cons

The most important question in the industry (also in academia): How to choose the ‘right’ model?

A: depends on the assumptions we make on the distribution of the error-term (Log, Normal, etc.)

Example: It is known that income (proxy for employment) is Log-Normal distributed (VWhy?)

L owest 1/5_ Middle 175 Top 1/5

% Families at income

—L1 ) 30 2O SO sdq 80 SO0 100 |110 120 | 130 | 140 150 | 160 4170 | 180 190 | 200

= 15 25 35 <25 55 65 TS 85 295 105 11415 125 1435 145 455 165 175 185 195
Household Income (55,000 categories) Ten bars wide: [200, 250)
All incomes = 250

Data source: http - ffwww.census. govihhes/fwwwcpstables/03201 1/hhinc/mew06__000_htm



MODELS OF DISCRETE CHOICE - LPM

LPM — Linear Probability Model

In general the empirical model is:

Wit =LI0t +I1t xd1 e + 26 xd2¢6 + I3 xd3¢E .., flht xi3t +ulit ; Whereylit
=1 070

—> The LPM is a simple OLS regression with a binary dependent variable )/sll'f =emp(1,0)

Why to choose this model:
Pros: Easy to estimate and compute ©

It’s generally accepted that the unknown information (unobserved to us) is normally distributed across our sample
Intuition: Choices are made in a random way (with a mean of 0 — on average)

Assumptions:

Exogenous — no correlation between xlk (the variables) and the error-term udit > C'O?”?"(X\[k, Zl):O
If C'O?”?”(X\lk, Zl) #0 > the estimators (ﬁsl/{’) are biased!

8 The error-term is normally distributed (2~ 7207"77262[(/[,0'72 ))



MODELS OF DISCRETE CHOICE - LPM

In Practice - Since )/sll'l" is now a binary choice (1,0):
The outcome (}) gets a probability interpretation (different from OLS)

We should define the ‘Probability of Success’- Pr Ob()/= 1) based on our inte |

How should we interpret the estimated coefficients (results - betas)?

beta = slope

ﬁlk is the expected change in the probability of ‘success’ - P?”Ob(ylll =

I alpha = intercept

Ll =0Prob(yii=1|X)/0xl] wherexljeEX

The effect ofﬁlk is linear on the outcome (}) and from here the name — LPM

Some bad news:

The expected (predicted) probability is not necessarily defined between 0-1 (does not make sense..)



LPM - REAL EXAMPLE

Question: How do having children affect married women’s choice to work (be employed) ?

Seems to be an important question in order to understand unemployment rate and to define optimal
strategies/policies

Data — Israeli Labour Force Survey for the years 1985-2010 (a panel data — time series)

Notation: Observation 2 l';Year >

Variables: Xlk

year — year of the survey

Sex — male (1), female (0)

Age

Marital status (1= married, 2= divorced, 3= widow, 4= single, 5= married live alone)
Schooling — years of education

Working_hours — number of hours at work (per week)

emp — | (yes) 0 (no) [if working_hours > 10 a week)]

Controls (demographics), etc

We need to choose from this huge data-set only: married women who have children
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LPM - REAL EXAMPLE

We will use python in order to run an OLS simple regression with binary dependent variable - LPM model:

Source SS ar MS Numbex of obs = 22768

F( 7, 22760) = 530.62

Model T796.424037 7 113.774862 Prob > F - O .0000

Residual 4880.18313 22760 .214419294 R-sguared = 0.1403

Adj) R—sguared = 0.1400

Total 5676.60717 22767 .249334878 Root MSE = .46305
emplo Coer. Scta. Exrx. T P>1T| (95 Conr. Inctexval)
schooslin .0317368 .0007409 42 .84 0.000 .0302846 .0331891
.0617393 .0028811 21 .43 0.000 .0560922 .0673864
:) - .0007611 .000032 -23 .81 0.000 - .0008238 -.0006985
childrxrel O - .0710904 .0048222 -14.74 0.000 - .0805422 -.0616386
children_ S_9 -.0391121 .0043027 -9.09 0.000 -.0475458 -.0306785
children_ 10_14 - .0485788 .0044201 -10.99 0.000 -.0572426 - .039915
childrxren 1S_17 —.0499378 .0064346 -7.76 0.000 - .06255 -.0373256
_cons —.954855386 . 0620296 -8 . 29 0.000 —1 .070136 —.82695716

. All the variables are statistically significant (p-value)

. All variables are consistent with our intuition (signs)

. How to interpret the results? (recall):
Each additional schooling year increases the probability of being employed by 3.2 biases point (0.317)
Having children between the ages of 0-4 decrease the probability of being employed by 7.1% (- 0.710)

This model — Discrete Choice — can help us understand our behavior in real life circumstances

11



LPM - EXAMPLE (AND SOME PROBLEMS..)

Variable |

Mean

Std. Dev. Min

Max

Problems with LPM model:

emplO
emp hat

22768
22768

The predicted probability is not necessarily defined between 0-1

.5260014
.5260014

.4993344

.1870334 —.4886191

Why? For some observations that prediction of the model result is :J/\ll'l‘ Eemplz'z‘ <0 orem

plit >1
If w

Obs Mean Std. Dev.

Variable | Min

emp hat | 497 -.0502759 .268012 -.4886191 1.172533

- Another disadvantage of the LPM — Heteroscedasticity:

The variance across agents (observations) changes across our sample

Some observations (‘agents’) have different variabilities (std.) from others, | . =™ °

Heteroscedasticity can invalidate statistical tests of significance
The estimators are not biased!

We can -easily fix this in-python
12
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LPM - CONCLUSIONS

LPM —
= Easy to estimate (OLS regression)

= The predicted (‘expected’) probability is not necessarily between 0-1

= The effect of the parameters (ﬂ\ll'l") on the expected/predicted probability is constant

(each change in X LIt will increase/decrease the probability in a constant fashion)

How can we overcome these crucial issues?
= There are more sophisticated models of discrete choice such as:
Probit (assuming standard normal distribution)

Logit (assuming standard log-normal distribution)

13



PROBIT/LOGIT MODEL

The general model (like LPM) tries to predict the ‘probability of success’:

Prob(ylit =1| xdj )=Prob(yiit =1 [x1, X2, A3, 14,..., xik)

The general form of the model is: Probydit =1X =G (FI0 + 41 xd1 +542 12, .., +
Lk xlk)

s.t.:0<6(2)1

= In order to ensure that the predicted values will be between 0-1 (0 <P7”Ob(')< 1) we need to

choose a function (G’(Z)) that satisfies this constrain

G'(Z) - can also be a non-linear function (the effect of the ﬁfll" varies across observations)
There are two useful functions:

The logistic function (Logit Model)

The standard normal function (Probit Model)

14



PROBIT/LOGIT MODEL

Functions properties

Logit Probit

- In the logit model the function (G(Z)) - In the Probit model the function (G(Z))

And @(2)=27T—-1/2 exp(—2T2 /2 )

This is the CDF of the standard logistic distribution function This is the CDF of the standard normal distribution function

Both functions are:

Increasing

~Equal to 0 when 2 goes to —CO

~Equal to | when Z goes to CO
Symmetry around O : 1-— G(Z)Z G(Z)

In general we can present logit/probit models as a sub-section of latent variable:)/r* =ﬁ¢0 +Xﬂ+ U, ]/:1 lf Lyf*
>0]



ESTIMATION (IN PRACTICE)

These models are not linear (the functions) = we cannot estimate them using OLS methodology
How do we do it? — using Maximum Likelihood Estimation process

The log-likelihood of the observations in the sample is:
logZ(B; 41, xd1 42 242,43 243, ..., vin, xin) = Y i=1Tn#E{yli
log/G(xli )] +(A—yli)log[1-G(xii f)]}

The function is non-linear and so there is no close form solution (analytic) for the estimators.

We are using numeric estimation in order to compute the values of each ﬁlk

The intuition behind the process:

Start with a random ‘guess’ about the magnitude of the coefficients (,K Lk )
Compute the log-likelihood function (from above)

With respect to the sign of the first derivative we choose another close ‘guess’ (higher or lower value) — and

compute once again the log-likelihood

Continue (2-3) until you reach the point at which there is no change in the result of the log-likelihood

expression formula (converge)

16



ESTIMATION - IN PRACTICE

In order to compute the Logit Model in Python use (Lab):

Prob(yii=emp(1))=£40 + (11 schooling+ 2 age+/I3 (age)T2 +414

L R AR 2N a

- 1
Itexration O: log likelihood

= —157350.77S
Itexration 1: log likelihood = —13979.924
Itexration 2: log likelihood = —13960.74
Itexration 3: log likelihood = —13960.718
Itexration 4: log likelihood = —-13960.718
Logisctic regression Number of obs - 22768
LR chi2 (7) - 3580.11
Prob > chi2 - 0.0000
Log likelihood = -13960.718 Pseudo R2 - 0.1136
emplO Coef. Std. Exx. = P>z [95% Conf. Intexval]]
schooling .1644975 .0041895 39.26 O0.000 -.1562863 -.1727087
age .2820811 .0136117 20.72 0.000 .2554026 .3087596
age =g - .0035001 .0001516 -23.09 O.000 - .0037973 - .003203
children O_4 —.3870174 .024095s6 —16.06 0.000 —.4342438 —-.3397909
children S_9 - . 2057233 .0207747 -9 .90 O0.000 —.246441 —.1650056
children_ 10_149 —.2434284 .0211916 -11.49 O0.000 —.2849632 —.2018935
children 1S_17 —.2569445 .0308171 —-8.34 O0.000 —-.3173451 —.196544
_<cons -6.805008 . 2963469 —-22 .96 O0.000 -7 .385837 -6.224178

Some questions:
Which coefficient is/are significant? Consistent with our intuition?

What is the [expected] probability that a women with 16 years of schooling, in the age of 31, and with 0-4 years old

children — will go to work (be employed)?

17



ESTIMATION - IN PRACTICE [EXPECTED PROB]

What is the [expected] probability that a women with |6 years of schooling, in the age of 31, and with 0-4 years old children — will go to work (be
employed)?

Itexraction O: log likelihood = —15750 -77S
Itexration 1: log likelihood = —13979.9524

ITteraction 2= log likelinocod = —13960.74a
Itexraction 3: log likelihood = —13960.718
ITtexraction <49: log likelinhocod = —13960.718
Togiscic =e gression Nummer or oms -  =227es
LR chi2 ((7) — 3ss80.11
Prob > chi2 - O .0000
Log likelinocood = -—-13960.718 Pseudo R2 - 0.1136
Let’s do it together:
empi10 Coer. Std. Exrx. = Be>1=1 [2S% Conf. Intexval]l
schooling -1644975 = .0041895S5 39 .26 O .000 1562863 49 .1727087
age -2820811 -0136117 20.72 O .0o00 -2554026 -3087596
W nt t m t age =o —.0035001 2 .00O01516 @ —23 .os ©o.ooo —.0037973 —.oco03203
e wa‘ o co Pu e children_ O_< —.3870174 0240956 —16.06 O .0o00 —.4342438 —.3397909
cniiaren=_s | -.zos7233 .ozo77a7 23155 olcoco DT85 Tliescose
children_10_14 —.2434284 9 .0211916 —11 .49 O .o000 —.2849632 — .201893S5
children_21S_217 —.2569445  .0308171 —8.34 ©o.ocoo —.31734a51 —.196544
5choo||ng years H _cons —6.805008  .2963469  —22 -96 ©.ococo —-7.385837 -6 .224178

In order to compute J we need to calculate the logistic G(z) function: G(Z)ZETXﬁ/l‘I-eTXﬁ

Wi =G(z)=elxf /1+elxf =el(FI0 +Lflschooling 16+ Flage 31+Flagesqgr31T2 +flchild04
1) /14+eT(fI0 +flschooling 16+ lage 31+ Flagesqgr 3112 +5lchild04 1) =0.8236

Wi =G(z)=elxf /1+elxf =el(fI0 +Lflschooling 16+ Flage 45+ Flagesqr 4512 +Flchild04

1) /1-|—ef(ﬁj() -I—,ﬁ’lSC’/ZOO[l'??ﬂ 16+ Rlaae AR+ Rlanesar AR T) + Rlrhild04 1) =0.8538
exp|—6.0805 +160.1644 + 31+ 0.282 + 312 » (~0.0035) + 1 » (—0.387))

1+ exp(—6.0805 + 16 » 0.1644 + 31 0.282 + 312  (~0.0035) + 1 » (—0.387))

18



INTERPRETING THE RESULTS (LOGIT)

. ince = ) we cannot interpret the estimators/coefficients " as we did in the simple model.
S LI 0,1 pret th Jcoeff LI did in the simple OLS model
Recall (OLS): one unite change (+/- |) in X417 increases/decreases the outcome J/\ll by ﬁ\ll

= We need to go back to the functions and compute the predicted value for J/\[l

(because the function G'(Z) is not a linear function (OLS)

However, the sign of the estimators (ﬁ_l) can be interpret immediately — always in the same direction

= There are 4 types of variables, and therefore there are 4 cases for interpreting the coefficients:

Case |: XL is a continues variable (think about angles (0o —3600), age, incme....)

You need to compute the direct effect ( or ‘odds ratio’)

L= 0Prob(y=1)/0xlj =G (L0 +xL5)/0xl] =g(£I0 +x5) (L],
where g(z)in logit equals to.g(z)=eTFI0 +x5 /(1+elxf )12

Pay attention that in this model the effect of a singular estimator (ﬁ\lj) depends on all other estimators in the

regression (ﬁlO +Xﬁ), where Xﬂ=ﬁ\l1 xd1 +ﬁl2 xd2 ...
19



INTERPRETING THE RESULTS (LOGIT)

Case I: X7 isa dummy (binary) variable (insurance (1,0))

You need to compute the difference between |Xll (: 1)—X~ll (O) |

L= 0Prob(y=1)/0xil =CG(FI0 +£I1 1+ 44 x4/ )— ¢(FI0 +0+ 4]

xd7)

where G(2)in logit equals to.G(z)=elxpf /1+elxff [CDF]

There are many more cases of course.. Python can do the job for

Let’s go back to our example —

The sign of the coefficients are all the same (direction)

LPM | logit probit
schooling 0.032 |0.164 | 0.098
age 0.062 10.282 ]0.173
age_sq -0.001 | -0.004 | -0.002
children_0_4 -0.071 | -0.387 | -0.234
children_5 9 -0.039 [ -0.206 | -0.124
children_10_14 |-0.049 | -0.243 | -0.147
children_15 17 | -0.050 | -0.257 | -0.156
_cons -0.949 [ -6.805 | -4.133

We-cannot intuitively interpret the magnitude of-the coefficients-in-the logit/probit-models

20




ESTIMATION (& FITNESS)

We can see that we overcome the biggest issue with the LPM model ( O>ID7”Ob(')< 1):

Variable | Cbs Mean Std. Devwv. Min Max
empl0 22768 .5260014 .4993344 o 1
emp lpm 22768 .5260014 .1870334 —.4886191 1.172533
emp logit 22768 .5260014 .1901581 .0052596 .9680831
emp probit 22768 .5247376 .1885883 . 0008062 .9791964
Employment Rate of Married Femaels, 2010 - Actual and Predicted Empioyment Rafe of Wartied Femasts, 2010 = Actusl aid Fredicted
100%
100% —+—actual (data)
90% ~a—|ogit prediction H
—+actual (data) —e—logit prediction with schooling = 16
0% =a=[PMpredicion  H g0 ——logit prediction with children_0_4 =2 | |
~o=|ogit prediction
0% ~probit prediction || "**
60%
70%
50%
60% 0%
30%
50% 1 v,
20%
40% .
\ 10%
3

T T 0%
2526 21 2829 30 3 3 33 34 35 % 37 330 40 41 42 43 4445 46 47 4849 50 51 52 53 54 55 % 57 50 59 60 61 6263 64 252 27 2829 30 31 32 33 34 35 3 37 38 39 40 41 42 43 44 45 46 47 45 49 50 51 52 I 54 55 5 5T 59 9 60 61 62 63 &4
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EXAMPLE & CONCLUSIONS

Discrete Choice Models are very useful in order to understand (and predict) consumers’ behavior
Allowing us to create Optimal Strategies
Suppose you are the Head of Marketing at Target

You want to understand why consumers are choosing 2% milk vs. fat-milk?

(effects on revenues, promotions, demand, prices, etc.)

You Have the Data! (e.g.: purchases, product’s attributes, expenses, # time-bought..)

You can use Discrete Choice Models (y=m2:/k2% (1,0 )|x)) in order to better understand your
consumers => predict their behavior

It has a large effect on defining Optimal Strategies (Operational, Marketing, etc.)
Tailored Promotions (and discounts — shifting demand)
Psychological Manipulations (buy | pay 3$, buy 2 pay 6$ - buying in bundle)
“Healthier Campaigns” — converting consumers to buying healthier products

Large effect on revenues and operations
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LAB
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