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AGENDA 

 

§  Introduction to (applied) Choice Modeling 

§  Learning how to leverage data & use predictive models 

§  Takeaway: understand behavioral patterns & decision making process 

§  Discrete Choice Models  

§  LPM – Linear Probability Model 

§  Non-Linear Probability Models: 

§  Logit (Log-Normal dist.) 

§  Probit (normal dist.) 

§  Nested-Logit 

§  Random Coefficient (RD) 

§  BLP 

§  …. 

§  Practical Example 

§  Motivation in Real-World Interface 
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How can we explain changes and differences between the choices  

we make – everyday? 

‣     Choices?: 

v  Whether I decide to work (be employed), or not? 

v  Whether I decide to purchase 2% milk vs. non-fat milk? 

v  Whether a firm decides to adopt a new technology? 

v  Whether I decide to get married? 

v  Whether Apple should invest in a new feature (or improve a current one)? 

All of these are important everyday choices we want to understand 

 

INTRODUCTION - MOTIVATION 
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What can we do ? 

§  We can try to understand how decisions are made (what drives our 

decision to choose, behave, or act in a certain way..) 

§  We can try to understand how different features/attributes affect our 

decisions or our behavior  

We will be able to make recommendations, create strategy, and polices 

Example:  Buy iPhone vs. Android? 

 How different attributes (e.g.: screen, design,.) or features (e.g.: Siri, Touch-

Screen) affect our decision to buy  

an iPhone or other (Android) 

Seems to be important for manufactures, marketers, and developers 

 

INTRODUCTION - MOTIVATION 
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MOTIVATION 

In order to answer these questions we need to understand agents’ behavior (e.g.: consumers, 

firms, policies) 

à we need to define and estimate Choice Models –Discrete (binary) or Continues 

§  We will focus on Discrete Choice Models 

 

§  Discrete Choice Models - A binary Choice: 

§  All of these questions deal with binary choices  – 0 or 1 (notation: 𝑜𝑢𝑡𝑐𝑜𝑚𝑒  
≡𝑦=(0,1)) 

§  Examples: 

v  Be employed, or not? à emp(0,1) 

v  Decided to purchase 2% milk or non-fat milk? à milk2%(0,1) 

v  Firm decided to adopt a new technology? à platform(0,1) 

v  Get married? à married(0,1) 
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FROM THEORY TO EMPIRICS  

A Fresh Reminder: 
§  We are living in a new era! – Big Data 

§  There are things we know ( ​𝑥↓𝑘 ) and there are some that we don’t know (𝑢) 

§  OLS regression : 𝑦= ​𝛽↓0 + ​𝛽↓1 ​𝑥↓1 + ​𝛽↓2 ​𝑥↓2 + ​𝛽↓3 ​𝑥↓3 ,..,+​𝛽↓𝑘 ​𝑥↓𝑘 + ​
𝑢↑𝑒𝑟𝑟𝑜𝑟  

What are we trying to do? –Best Approximation  
We want to find a linear line which is the best approximation (prediction) given all the data we have 

 

§  The method? - We minimize the ‘error-term’/’residual’ (distance between the points) : 𝑀𝐼𝑁(​𝑢↑2 )=𝑀𝐼𝑁( ​(𝑦
−𝑥𝛽)↑2 ) 

§  OLS is a linear regression – the effect of the estimated parameters ( ​𝛽↓𝑘 ) on the outcome (𝑦) is linear (i.e., constant)  

§  How do we interpret the results? – one unit change in ​  𝑥↓𝑘  (increase/decrease) will change 𝑦 by ​𝛽↓𝑘  (‘linearity’) 
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outcome	


attributes	



Un-known information 
for the econometrician 	





MODELS OF DISCRETE CHOICE 

Three common models: 
§  LPM – Linear Probability Model 

§  Non-Linear Models (Advanced) 

§  Probit (assuming Normal dist.) 

§  Logit (assuming Log-Normal dist.) 

§  Each model has its own features (assumptions)  

§  Each model has its own pros and cons 

The most important question in the industry (also in academia):  How to choose the ‘right’ model?  

  

A: depends on the assumptions we make on the distribution of the error-term (Log, Normal, etc.) 

Example:  It is known that income (proxy for employment) is Log-Normal distributed (Why?) 
 

 

7 



MODELS OF DISCRETE CHOICE – LPM 

LPM – Linear Probability Model 

In general the empirical model is:  

​𝑦↓𝑖𝑡 = ​𝛽↓0𝑡 + ​𝛽↓1𝑡 ​𝑥↓1𝑡 + ​𝛽↓2𝑡 ​𝑥↓2𝑡 + ​𝛽↓3𝑡 ​𝑥↓3𝑡   ,..  ,  ​𝛽↓𝑘𝑡 ​𝑥↓3𝑡 + ​𝑢↓𝑖𝑡   ;  𝑊ℎ𝑒𝑟𝑒:​𝑦↓𝑖𝑡 

=1  𝑜𝑟  0 

à The LPM is a simple OLS regression with a binary dependent variable ​𝑦↓𝑖𝑡 =𝑒𝑚𝑝(1,0) 

Why to choose this model: 

•  Pros: Easy to estimate and compute J 

•  It’s generally accepted that the unknown information (unobserved to us) is normally distributed across our sample 

•  Intuition:  Choices are made in a random way (with a mean of 0 – on average) 

Assumptions: 

1.  Exogenous – no correlation between ​𝑥↓𝑘  (the variables) and the error-term ​𝑢↓𝑖𝑡  à 𝑐𝑜𝑟𝑟(​𝑥↓𝑘 ,  𝑢)=0 

 If 𝑐𝑜𝑟𝑟(​𝑥↓𝑘 ,  𝑢)  ≠0 à the estimators ( ​𝛽↓𝑘 ) are biased! 

2.  The error-term is normally distributed (𝑢~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇, ​𝜎↑2 )) 
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MODELS OF DISCRETE CHOICE – LPM 

In Practice - Since ​𝑦↓𝑖𝑡  is now a binary choice (1,0): 

§  The outcome (𝑦) gets a probability interpretation (different from OLS)  

§  We should define the ‘Probability of Success’ - 𝑃𝑟𝑜𝑏(𝑦=1) based on our interest  

How should we interpret the estimated coefficients (results - betas)? 

 ​𝛽↓𝑘  is the expected change in the probability of ‘success’ - 𝑃𝑟𝑜𝑏(​𝑦↓𝑖 =1|  𝑋)  


​𝛽↓𝑘 = ​𝜕𝑃𝑟𝑜𝑏( ​𝑦↓𝑖 =1|𝑋)/𝜕​𝑥↓𝑗    𝑤ℎ𝑒𝑟𝑒   ​𝑥↓𝑗 ∈𝑋 

§  The effect of ​𝛽↓𝑘  is linear on the outcome (𝑦) and from here the name – LPM 

Some bad news:  

The expected (predicted) probability is not necessarily defined between 0-1 (does not make sense..) 
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Question:  How do having children affect married women’s choice to work (be employed) ? 

§  Seems to be an important question in order to understand unemployment rate and to define optimal 
strategies/policies  

Data –  Israeli Labour Force Survey for the years 1985-2010 (a panel data – time series)  

§  Notation: Observation à 𝑖  ; Year à 𝑡 
§  Variables: ​𝑥↓𝑘  

1.   year – year of the survey 

2.  Sex – male (1), female (0) 

3.  Age  

4.  Marital status (1= married, 2= divorced, 3= widow, 4= single, 5= married live alone) 

5.  Schooling – years of education  

6.  Working_hours – number of hours at work (per week) 

7.  emp – 1 (yes) 0 (no) [if  working_hours > 10 a week)] 

8.  .. 

9.  Controls (demographics), etc 
 

§  We need to choose from this huge data-set only: married women who have children  

LPM – REAL EXAMPLE 
 

10 



We will use python in order to run an OLS simple regression with binary dependent variable - LPM model:  

§  All the variables are statistically significant (p-value) 

§  All variables are consistent with our intuition (signs) 

§  How to interpret the results? (recall): 

§  Each additional schooling year increases the probability of being employed by 3.2 biases point (0.317) 

§  Having children between the ages of 0-4 decrease the probability of being employed by 7.1% (- 0.710) 

 This model – Discrete Choice – can help us understand our behavior in real life circumstances 

 

LPM – REAL EXAMPLE 
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Problems with LPM model: 

§  The predicted probability is not necessarily defined between 0-1 

Why? For some observations that prediction of the model result is : ​𝑦↓𝑖𝑡 ≡ ​𝑒𝑚​𝑝↓𝑖𝑡  <0  𝑜𝑟   ​𝑒𝑚​
𝑝↓𝑖𝑡  >1 

 If we see many predicted observations like that – it is problematic: (497/22,768) 

 

 

•  Another disadvantage of the LPM – Heteroscedasticity: 

§  The variance across agents (observations) changes across our sample 

§  Some observations (‘agents’) have different variabilities (std.) from others (‘trend’) 

§  Heteroscedasticity can invalidate statistical tests of significance  

§  The estimators are not biased! 

We can easily fix this in python 

LPM – EXAMPLE (AND SOME PROBLEMS..) 
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LPM – 

§   Easy to estimate (OLS regression) 

§  The predicted (‘expected’) probability is not necessarily between 0-1  

§  The effect of the parameters ( ​𝛽↓𝑖𝑡 ) on the expected/predicted probability is constant  

(each change in ​𝑥↓𝑖𝑡  will increase/decrease the probability in a constant fashion) 

How can we overcome these crucial issues? 

§  There are more sophisticated models of discrete choice such as: 

§  Probit (assuming standard normal distribution) 

§  Logit (assuming standard log-normal distribution) 

LPM – CONCLUSIONS 
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The general model (like LPM) tries to predict the ‘probability of success’:  

Prob(​𝑦↓𝑖𝑡 =1|   ​𝑥↓𝑗 )=𝑃𝑟𝑜𝑏(​𝑦↓𝑖𝑡 =1  |𝑥1,  𝑥2,  𝑥3,  𝑥4,…,   ​𝑥↓𝑘 ) �

The general form of the model is: 𝑃𝑟𝑜𝑏​​𝑦↓𝑖𝑡 =1⁠𝑋 =𝐺(​𝛽↓0 + ​𝛽↓1 ​𝑥↓1 + ​𝛽↓2 𝑥2  ,  ..  ,  +​
𝛽↓𝑘 ​𝑥↓𝑘 ) 

𝑠.𝑡.  :  0<𝐺(𝑧)<1 

§  In order to ensure that the predicted values will be between 0-1 (0<𝑃𝑟𝑜𝑏(∙)<1) we need to 

choose  a function (𝐺(𝑧)) that satisfies this constrain  

§  𝐺(𝑧) - can also be a non-linear function (the effect of the ​𝛽↓𝑖𝑡   varies across observations) 

There are two useful functions:  

§  The logistic function (Logit Model) 

§  The standard normal function (Probit Model) 

 

 

PROBIT/LOGIT MODEL  
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Functions properties  

  Logit                Probit 

- In the logit model the function (𝐺(𝑧)):                    - In the Probit model the function (𝐺(𝑧)): 






 

 

Both functions are: 

§  Increasing  

§  ~Equal to 0 when 𝑧 goes to −∞  goes to −∞ 

§  ~Equal to 1 when 𝑧 goes to ∞  goes to ∞ 

§  Symmetry around 0 : 1−𝐺(𝑧)=𝐺(𝑧)  

In general we can present logit/probit models as a sub-section of latent variable: ​𝑦↑∗ = ​𝛽↓0 +𝑥𝛽+𝑢,                𝑦=1  𝑖𝑓  [ ​𝑦↑∗ 
>0]


PROBIT/LOGIT MODEL  
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𝐺(𝑧)= ​​𝑒↑𝑥𝛽 /1+ ​𝑒↑𝑥𝛽     
 
 
This is the CDF of the standard logistic distribution function  

𝐺(𝑧)=∫−∞↑𝑧▒𝜙(𝑣)𝑑𝑣=𝜃(𝑧)    
And 𝜙(𝑧)=2​𝜋↑−1/2 ​exp⁠(​− ​𝑧↑2 /2 )  

This is the CDF of the standard normal distribution function  



These models are not linear (the functions) à we cannot estimate them using OLS methodology  

How do we do it? – using Maximum Likelihood Estimation process 

§  The log-likelihood of the observations in the sample is: 

​log ⁠𝐿(β;​𝑦↓1 ,   ​𝑥↓1 , ​𝑦↓2 , ​𝑥↓2 , ​𝑦↓3 , ​𝑥↓3 ,  ….  ,   ​𝑦↓𝑛 ,   ​𝑥↓𝑛 ) =  ∑𝑖=1↑𝑛▒{ ​𝑦↓𝑖 ​
log ⁠[𝐺(​𝑥↓𝑖 𝛽)] +(1− ​𝑦↓𝑖 )log​[1−𝐺(​𝑥↓𝑖 𝛽)]}  

§  The function is non-linear and so there is no close form solution (analytic) for the estimators. 

We are using numeric estimation in order to compute the values of each ​𝛽↓𝑘  
§  The intuition behind the process: 

1.  Start with a random ‘guess’ about the magnitude of the coefficients ( ​𝛽↓𝑘 ) 
2.  Compute the log-likelihood function (from above) 

3.  With respect to the sign of the first derivative we choose another close ‘guess’ (higher or lower value) – and 

compute once again the log-likelihood  

4.  Continue (2-3) until you reach the point at which there is no change in the result of the log-likelihood 

expression formula (converge) 

 

 

ESTIMATION (IN PRACTICE)  
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§  In order to compute the Logit Model in Python use (Lab):  

𝑃𝑟𝑜𝑏(​𝑦↓𝑖 =𝑒𝑚𝑝(1))= ​𝛽↓0 + ​𝛽↓1 𝑠𝑐ℎ𝑜𝑜𝑙𝑖𝑛𝑔+ ​𝛽↓2   𝑎𝑔𝑒+ ​𝛽↓3 ​(𝑎𝑔𝑒)↑2 + ​𝛽↓4 
𝑐ℎ𝑖𝑙𝑑0−4,..,  + ​𝑒↓𝑖  

§  Some questions: 

§  Which coefficient is/are significant? Consistent with our intuition? 

§  What is the [expected] probability that a women with 16 years of schooling, in the age of 31, and with 0-4 years old 

children – will go to work (be employed)? 

 

 

 

ESTIMATION  - IN PRACTICE  
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§  What is the [expected] probability that a women with 16 years of schooling, in the age of 31, and with 0-4 years old children – will go to work (be 
employed)? 

§  Let’s do it together: 

§  We want to compute the expected/predicted ​𝑦   for a special case: 

§  Schooling years = 16 | Age = 31| Children_0_4 = 1 

§  In order to compute ​𝑦    we need to calculate the logistic G(z) function: 𝐺(𝑧)= ​​𝑒↑𝑥𝛽 /1+ ​𝑒↑𝑥𝛽   

​​𝑦↓𝑖  =  𝐺(𝑧)= ​​𝑒↑𝑥𝛽 /1+ ​𝑒↑𝑥𝛽  = ​​𝑒↑( ​𝛽↓0 + ​𝛽↓𝑠𝑐ℎ𝑜𝑜𝑙𝑖𝑛𝑔 16+ ​𝛽↓𝑎𝑔𝑒 31+ ​𝛽↓𝑎𝑔𝑒𝑠𝑞𝑟 ​31↑2 + ​𝛽↓𝑐ℎ𝑖𝑙𝑑04 

1) /1+ ​𝑒↑( ​𝛽↓0 + ​𝛽↓𝑠𝑐ℎ𝑜𝑜𝑙𝑖𝑛𝑔 16+ ​𝛽↓𝑎𝑔𝑒 31+ ​𝛽↓𝑎𝑔𝑒𝑠𝑞𝑟 ​31↑2 + ​𝛽↓𝑐ℎ𝑖𝑙𝑑04 1)  =0.8236 

 

​​𝑦↓𝑖  =  𝐺(𝑧)= ​​𝑒↑𝑥𝛽 /1+ ​𝑒↑𝑥𝛽  = ​​𝑒↑( ​𝛽↓0 + ​𝛽↓𝑠𝑐ℎ𝑜𝑜𝑙𝑖𝑛𝑔 16+ ​𝛽↓𝑎𝑔𝑒 45+ ​𝛽↓𝑎𝑔𝑒𝑠𝑞𝑟 ​45↑2 + ​𝛽↓𝑐ℎ𝑖𝑙𝑑04 

1) /1+ ​𝑒↑( ​𝛽↓0 + ​𝛽↓𝑠𝑐ℎ𝑜𝑜𝑙𝑖𝑛𝑔 16+ ​𝛽↓𝑎𝑔𝑒 45+ ​𝛽↓𝑎𝑔𝑒𝑠𝑞𝑟 ​45↑2 + ​𝛽↓𝑐ℎ𝑖𝑙𝑑04 1)  =0.8538 

 

ESTIMATION  - IN PRACTICE [EXPECTED PROB] 
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INTERPRETING THE RESULTS (LOGIT)  

§  Since ​𝑦↓𝑖 =𝑓(0,1) we cannot interpret the estimators/coefficients ​𝛽↓𝑖  as we did in the simple OLS model. 

§  Recall (OLS): one unite change (+/- 1) in ​𝑥↓𝑖  increases/decreases the outcome ​𝑦↓𝑖  by ​𝛽↓𝑖   

§  We need to go back to the functions and compute the predicted value for ​𝑦↓𝑖  
(because the function 𝐺(𝑧) is not a linear function (OLS) 

§  However,  the sign of the estimators (𝛽_𝑖) can be interpret immediately – always in the same direction ) can be interpret immediately – always in the same direction 

§  There are 4 types of variables,  and therefore there are 4 cases for interpreting the coefficients: 

1.  Case 1: ​𝑥↓𝑖  is a continues variable (think about angles (0°  −360°), age, incme….) 

1.  You need to compute the direct effect ( or ‘odds ratio’) 

​𝛽↓𝑗 =   ​𝜕𝑃𝑟𝑜𝑏(𝑦=1)/𝜕​𝑥↓𝑗  = ​𝜕𝐺(​𝛽↓0 +𝑥𝛽)/𝜕​𝑥↓𝑗  =𝑔(​𝛽↓0 +𝑥𝛽)  ∙ ​𝛽↓𝑗 ,   
𝑤ℎ𝑒𝑟𝑒  𝑔(𝑧)𝑖𝑛  𝑙𝑜𝑔𝑖𝑡  𝑒𝑞𝑢𝑎𝑙𝑠  𝑡𝑜:𝑔(𝑧)= ​​𝑒↑​𝛽↓0 +𝑥𝛽 /​(1+ ​𝑒↑𝑥𝛽 )↑2   

Pay attention that in this model the effect of a singular estimator ( ​𝛽↓𝑗 ) depends on all other estimators in the 

regression (​𝛽↓0 +𝑥𝛽),  𝑤ℎ𝑒𝑟𝑒  𝑥𝛽= ​𝛽↓1 ​𝑥↓1 + ​𝛽↓2 ​𝑥↓2 …. 
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INTERPRETING THE RESULTS (LOGIT)  

1.  Case 1I: ​𝑥↓𝑖  is a dummy (binary) variable (insurance (1,0)) 

1.  You need to compute the difference between | ​𝑥↓𝑖 (=1)− ​𝑥↓𝑖 (0)| 

​𝛽↓𝑗 =   ​𝜕𝑃𝑟𝑜𝑏(𝑦=1)/𝜕​𝑥↓1  =𝐺(​𝛽↓0 + ​𝛽↓1 1+ ​𝛽↓j ​𝑥↓𝑗 )− 𝐺( ​𝛽↓0 +0+​𝛽↓j ​
𝑥↓𝑗 ) 

𝑤ℎ𝑒𝑟𝑒  𝐺(𝑧)𝑖𝑛  𝑙𝑜𝑔𝑖𝑡  𝑒𝑞𝑢𝑎𝑙𝑠  𝑡𝑜:𝐺(𝑧)= ​​𝑒↑𝑥𝛽 /1+ ​𝑒↑𝑥𝛽    [𝐶𝐷𝐹]

There are many more cases of course.. Python can do the job for us… - Lab! 

Let’s go back to our example –  

 

 

 

 

§  The sign of the coefficients are all the same (direction) 

§  We cannot intuitively interpret the magnitude of the coefficients in the logit/probit models 
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We can see that we overcome the biggest issue with the LPM model ( 0>𝑃𝑟𝑜𝑏(∙)<1): 

 

 

 

ESTIMATION (& FITNESS)  
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Discrete Choice Models are very useful in order to understand (and predict) consumers’ behavior 

Allowing us to create Optimal Strategies 

Suppose you are the Head of Marketing at Target  

§  You want to understand why consumers are choosing 2% milk vs. fat-milk? 

(effects on revenues, promotions, demand, prices, etc.) 

§  You Have the Data! (e.g.: purchases, product’s attributes, expenses, # time-bought..) 

§  You can use Discrete Choice Models (𝑦=𝑚𝑖𝑙𝑘2%(1,0)|𝑥)) in order to better understand your 

consumers  à predict their behavior  

§  It has a large effect on defining Optimal Strategies (Operational, Marketing, etc.) 

§  Tailored Promotions (and discounts – shifting demand) 

§  Psychological Manipulations (buy 1 pay 3$, buy 2 pay 6$ - buying in bundle) 

§  “Healthier Campaigns” – converting consumers to buying healthier products 

§  Large effect on revenues and operations  

 

EXAMPLE & CONCLUSIONS   
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LAB 
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